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Mushroom data creation, curation, 
and simulation to support 
classification tasks
Dennis Wagner, Dominik Heider & Georges Hattab*

Predicting if a set of mushrooms is edible or not corresponds to the task of classifying them into two 
groups—edible or poisonous—on the basis of a classification rule. To support this binary task, we have 
collected the largest and most comprehensive attribute based data available. In this work, we detail 
the creation, curation and simulation of a data set for binary classification. Thanks to natural language 
processing, the primary data are based on a text book for mushroom identification and contain 
173 species from 23 families. While the secondary data comprise simulated or hypothetical entries 
that are structurally comparable to the 1987 data, it serves as pilot data for classification tasks. We 
evaluated different machine learning algorithms, namely, naive Bayes, logistic regression, and linear 
discriminant analysis (LDA), and random forests (RF). We found that the RF provided the best results 
with a five-fold Cross-Validation accuracy and F2-score of 1.0 ( µ = 1 , σ = 0 ), respectively. The results 
of our pilot are conclusive and indicate that our data were not linearly separable. Unlike the 1987 data 
which showed good results using a linear decision boundary with the LDA. Our data set contains 23 
families and is the largest available. We further provide a fully reproducible workflow and provide the 
data under the FAIR principles.

Mushrooms are available in a great variety. Commonly found in nature, the fungus is the visible fruiting body, 
while in the substrate there is an underground mycelium1–3. Fungi are responsible for breaking down waste 
and recycling the useful nutrients in the soil. They can be a delicious treat, part of a traditional meal or even 
have medicinal properties4,5. Since the discovery of penicillin, mushrooms have been the focus of many other 
discoveries6. From its use as a recycled organic resource7, to habitat-wide association with root-associated fungal 
communities in forests8, to fungal computers9.

Since most mushrooms found in nature appear to have common characteristics, there are many tips to identify 
edible mushrooms. However, different mushrooms may look very similar and can only be distinguished by one 
or two specific characteristics or attributes; e.g.  cap shape, gill color, odor, etc. Thus, deciding between edible 
and poisonous becomes a difficult task, let alone determining the species. In fact, many field guides and text 
books advise against using simple rules to determine edibility2,3,10. Due to this challenge, many applications and 
research works in different knowledge domains have been concerned with the identification and classification 
of mushrooms. Especially with the task of distinguishing poisonous from edible mushrooms.

There are two main approaches based either on image data or on the attributes mentioned above. The first 
is in computer vision research. Various machine learning techniques and algorithms are applied to a data set of 
mushroom images. The main idea is to classify mushroom images, without background, based on the features 
extracted from the image domain. In this specific knowledge domain, different variants of this approach and 
different algorithms have been studied. For example, neural networks (NN), support vector machines (SVM), 
decision trees or k-nearest neighbors (kNN)11–13. The second relates to attribute based research. Either motivated 
by the biological question of toxicity vs. edibility, or by evaluating novel algorithms and classifiers, attribute-based 
works relied on one specific mushroom data set14–17. The mushroom data set in question was provided by the 
University of California, Irvine (UCI) in 198718. It includes descriptions of hypothetical entries corresponding 
to 23 species of gilled mushrooms in the Agaricus and Lepiota Family (pp. 500–525)2.

This data clearly distinguishes edible mushroom entries from poisonous ones, where poisonous includes 
unknown edibility and not recommended. Yet, it is too small and does not reflect the variety of mushrooms. 
In addition, it is used recurrently to demonstrate binary classification in education and as a use case for public 
understanding of applied machine learning. Although this data set is outdated in itself, it is still used today to 
show how ‘simple’ such a task is. This is in itself problematic because this data set is neither representative nor 
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a good teaching example. Motivated by natural mushroom diversity and a more comprehensive data set, we 
describe the steps that lead to a new pilot data that includes a broader representation of mushroom species 
adapted for binary classification. For comparison purposes, we adopted the UCI 1987 data format to create such 
a data set. Our work makes five main contributions: 

(1)	 The creation of a data workflow to extract text book data entries, format these entries into a primary data 
set that contains the mushroom species, adopt variables from the nominal variables of the UCI 1987 data, 
and generate hypothetical mushroom entries as a secondary data using random sampling.

(2)	 Since the newly created data follows the 1987 data format and encoding, comparability and benchmarking 
are possible. That is to say, the research papers that cite the 1987 data can be directly used on our pilot data.

(3)	 A reproducible workflow to create, curate and simulate a pilot data for binary classification and evaluation. 
This includes the usage of four classifiers to address the task of binary classification and its evaluation by 
calculating multiple performance metrics and their interpretation.

(4)	 The report of a suitable classifier capable of perfect classification results for the pilot data. The random 
forests classifier achieved perfect accuracy and F2 score metrics.

(5)	 The creation of a more realistic data set that includes 173 mushroom species from 23 families and that is 
only non linearly separable.

Results
While the 1987 data is representative of 23 species from 2 closely related mushroom families, we have curated a 
total of 173 species from 23 mushroom families. This secondary data is simulated and is based on the third edition 
of the identification book guide Mushrooms and Toadstools3. It contains over 230 mushrooms and toadstools and 
rigorously describes information into attributes such as size, habitat, the season they can be found in, and whether 
they are edible and poisonous. In addition to the fact that many of the species are commonly found throughout 
the European continent, this subset makes the problem of creating a larger data set tractable. By including only 
stemmed mushrooms, the secondary data represents an approximate increase of 87% more species and 91% more 
families. Figure 1 depicts a handful of mushroom observations made in the course of summer/autumn of 2020 
in Marburg, Germany. Since the 1987 data was created for only two families, the classification task will only be 
successful on the mushroom species that belong to these families. Thanks to the secondary data, we are able to 
classify additional mushroom species given the observed attributes.

To reproduce all data related operations and make our results transparent, we have shared our workflow. It 
contains all modules, scripts and all intermediary and final data sets and can be found at https://​mushr​oom.​
mathe​matik.​uni-​marbu​rg.​de/. The data has also been assigned a digital object identifier (DOI)19. In addition, 
we report the primary data or secondary data as results in the next sections.

Primary data.  The primary data is saved in a comma separated file (CSV) and contains 24 columns with 
3 classes and 21 variables. Table 1 reports the header with the first three entries as well as the last two entries.

A subset of the variables had a large number of missing values, making them unusable. This was mainly due 
to the fact that the new source text book did not contain consistent information for all the mushroom attributes 
and the different species (c.f., Supplementary material)3. To remedy this problem, we contemplated the manual 
enrichment of the primary data by using a copy of the Enrich mushroom identification text book in the German 
language10. Although this would allow us to fill in the void for many species, such a process was deemed problem-
atic due to a set of challenges. Aside from being time consuming and very demanding, enriching only a subset of 
the species could have led to major data inconsistencies. For these reasons, we did not enrich the primary data.

Although the designed modules were successfully parsed, extracted, and matched strings and sub-strings 
from each book entry, some mismatches occurred. The resulting primary data was manually curated and qual-
ity controlled.

Secondary data.  For the simulation, we chose to create 353 hypothetical mushrooms entries per species. 
This corresponds to the same number of entries per species in the 1987 data. Intermediary and final CSV files 
consisted of a header followed by the 61,069 hypothetical mushroom entries. The data comprised one binary 
class, 17 nominal variables and three quantitative variables. An excerpt of the final secondary data is reported in 
Table S2. The secondary data is to be considered a pilot as it is a simulated data set.

Data quality and integrity.  Both data sets were found to be balanced. The quality of balance is based on 
the class values: poisonous and edible. The overall ratio for the each data, 1987 and secondary data, was (p : 0.48, 
e : 0.52) and (p : 0.55, e : 0.45), respectively. Thanks to the coupling of random sampling and normal distribu-
tions, we successfully generated different mushroom entries. In Supplementary Fig. S2, we report an example of 
normal sampling of 500 values for each of the three qualitative variables; specifically for the mushroom species 
Amanita muscaria or Fly Agaric. The linear correlation of the normally sampled quantitative variables is then 
verified. An example visualization is reported in Fig. S3, where the linear correlation is visible in each plot.

To examine the correlation of the variables within each data set, we visualized all pairwise correlations as 
heat maps. Each heat map compares all the variables pairwise, which resulted into two variables at each cell 
position. Figures 2 and 3 depict the results for the 1987 and secondary data, respectively. The sequential gray 
scale palette is clipped so it encodes the highest correlation value of 1 in black and the lowest values in gray20. 
Depending on the considered variable pairs, symmetries and asymmetries were observed due to the different 
calculated correlations (e.g., Theil’s U, Person coefficient). For the heat map of the 1987 data, we observed that 

https://mushroom.mathematik.uni-marburg.de/
https://mushroom.mathematik.uni-marburg.de/


3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8134  | https://doi.org/10.1038/s41598-021-87602-3

www.nature.com/scientificreports/

the veil-type is correlated with all the other variables, which makes it redundant. We noted multiple instances of 
such correlations. First, the correlation values for the gill-attachment with the stalk-color above and below the 
ring are both capped at 0.97. Second, the stalk-color highly correlated with the gill-attachment with the veil-color 
at 0.87 and 0.88, respectively. A third and last example is odor, which alone has a correlation value of 0.91 to 
class. This has made the classification task obsolete. Although this extremely high correlation is an outlier, about 
half of the variables have a class determining correlation between 0.25 and 0.5. In comparison, we found no 

Figure 1.   Annotated mushroom observations. From left to right, the annotated mushroom species are: Amanita 
muscaria, Coprinopsis atramentaria, Pluteus cervinus. The one image without an annotation corresponds to a 
species from the puffball mushroom family. Because stemless mushrooms species were excluded from the data, 
an identification cannot be made. The largest image is shown for a mushroom from the Russula fragilis species 
with the following attributes: sunken cap-shape, purple cap-color, whitegill-color, whitestem-color.

Table 1.   Primary data excerpt. The square brackets refer either to a set of nominal variables or to a continuous 
range of values. The single letters were encoded as nominal variables. Regarding continuous variables (seen 
as float numbers), they correspond to lengths in centimeters (cm), with the exception of stem-width reported 
in millimeter (mm). The shown columns are the three classes, the first two variables and the last variable. 
Intermediary columns are not shown due to page and column size restrictions.

Family Name Class Cap-diameter Cap-shape Season

Amanita Family Fly Agaric p [10:20] [x, f] [u, a, w]

Amanita Family Panther Cap p [5:10] [p, x] [u, a]

Amanita Family False Panther Cap p [10:15] [x, f] [u, a]

. . . . . .

Morel Family Common Morel e [3:8] [p, c, o] [s]

Jelly Discs Family Jelly Babies p [1:1.5] [x, f, s] [u,a]
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class determining correlation greater than 0.2 for the secondary data. The only notable high correlations are the 
expected correlations for the continuous variables. These were determined by the assumed co-variance matrix 
as described in Eq. (1).

Evaluation.  We report the accuracy and F2 score results for each method or classifier in Fig. 4; from all 
trained models. In general, the RF was found to provide the best and most consistent results for the secondary 
data set. On the contrary, the LDA classifier was sufficient for successfully classifying the 1987 data, which points 
to a linear boundary separation in this data. As seen in the reported ROC curve of the RF in Fig. 5, the AUC on 
the secondary data is found to be optimal with a perfect classification score.

In terms of cross validation, the 1987 data performed significantly worse in cross-validation, while the sec-
ondary data had more consistent results independent of the used classifier. That is to say, the 1987 data showed 
a significantly higher variance, while the secondary data had no variance. These results were observed for both 
the accuracy and F2 score metrics.

Moreover, as seen in Fig. 4, similar accuracy and F2 score results were reported when using either the logistic 
regression or the LDA for the secondary data. When considering these classifiers, the accuracy of the secondary 
data was found to be good, but significantly worse than the accuracy of the 1987 data.

Figure 2.   1987 data.

Figure 3.   Secondary data.



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8134  | https://doi.org/10.1038/s41598-021-87602-3

www.nature.com/scientificreports/

Discussion
First, this work inscribes itself in putting a more substantial effort to creating a more comprehensive data set to 
addressing the task of binary classification for poisonous versus edible mushrooms. In its entirety, this work is 
easily reproducible. The methods are available as Python modules in the related repository and are described 
in the Supplementary material. Two data sets, namely the primary data and the secondary data were the main 
output of this work. Our classification results were conclusive. They especially showed that the 1987 data is 
linearly separable, while the secondary is only non linearly separable using RF. The historical 1987 data set is a 
product of simulation, neither the intermediary data was published, nor the employed methods to create the 8,124 
hypothetical mushroom entries. For the new secondary data that we created, the intermediate variations of the 
data sets are accessible and easily reproducible. All source code and pertaining data available in the repository 
are open-source, freely available for modification and remixing under the Creative Commons License CC BY 4.0.

Second, the primary data is limited in its representation of reality. Aside from having many missing values 
and in its current state, the primary data makes no distinction between nominal values that occur alternatively 
and those that occur simultaneously. For the example occurrence of a simultaneous characteristic like the cap 
surface being shiny and sticky, random sampling from the set {shiny, sticky}: {h, t} is inappropriate. To account 
for this observation, the structure of the primary data would have to be reworked to distinguish between these 
two types of nominal values. This is possible by including subsets for simultaneous occurrences of mushroom 
characteristics.

Third, another limitation exists with the nominal values of the secondary data. This limitation addresses the 
fact that the simulation does not account for correlation between nominal variables. For example, the cap shape 
and surface of many mushroom species is convex/smooth when they are are younger and flattens/dries as they 
become older. Hence, mushrooms with the value convex: x for the variable cap-shape should usually have the 
value smooth: s for the variable cap-surface. To remedy this issue, a collaboration with mycologists is necessary 
to extend the primary data so to create entries of different stages of each mushroom species. For a more general 
approach, it is possible to incorporate the correlation among different characteristics by factoring it into the 
simulation process (nominal and quantitative). For the case of nominal data, this is complicated and it is even 
dangerous in the absence of empirically based correlations. For quantitative variables, an assumption is made 
for the correlation between the cap diameter, the stem height and the stem width. While the assumption that 
mushrooms with larger caps have longer and broader stems is logical, it does not hold true for all species.

Fourth, the fact that all fungal species share the same correlation represented by the assumption of a spe-
cific co-variance matrix may be misleading. However, our idea was to create a reproducible example where 

Figure 4.   Five-fold cross-validation accuracy and F2 score results for both data sets and using each of the four 
classifiers. The highest score results are obtained using the RF classifier. They are reported in gray color.
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correlations are taken into account in the simulation process. To obtain experimentally based correlations, co-
variances must be calculated from field observations, which can then replace the herein assumed co-variance 
matrix, c.f., Eq. (1). To further improve the realism, we would advise creating separate co-variance matrices for 
different mushroom species. Another couple of points are worth mentioning. One point is to create an even more 
diverse primary data set from larger text books. For example, we could recommend The Big Kosmos Mushroom 
Field Guide: All Edible Mushrooms with Their Poisonous Lookalikes from Kosmos Verlag as it includes over 
1,200 mushrooms species21. Another point is to re-examine the creation of hypothetical entries by using other 
algorithmic approaches, for example interval regression to fit the interval nature of the primary data. Fifth, 
representing mushrooms as such low dimensional data points is quite challenging and a lot of simplifications 
and abstractions have to be made. To demonstrate this point, a good example are the color variables. For exam-
ple, the cap-color with nominal values as brown: n, which is vague and ambiguous. A more precise and reliable 
approach could be RGB values or HEX codes. However, this would require gathering colors from pictures and 
considering for example the median color of an image region, such as the color of a mushroom cap. In addition, 
it would be worthwhile to establish a standard for the color coding, for example using the Munsell color system. 
Yet, it is important to note that most of the nominal variables present in the secondary data are still widely used 
and accepted.

Sixth, the secondary data inherits the data structure and format from the 1987 data. This is at best reduc-
tionist since this historical data only relied on observations of 23 species of gilled mushrooms from two closely 
related families. As a result, the structure only applies to mushrooms having a cap, gills and a stem. To conform 
to these constraints, 63 mushrooms were excluded from the new text book. While this illustrates the integra-
tion and reproducibility of our work, we would advise a broader and more flexible structure or data format to 

Figure 5.   ROC curve for each classifier applied to the secondary data. The x-axis and the y-axis correspond to 
the FP and TP rates, respectively. The black line represents the ROC curve. The area under the curve represents 
the AUC which is reported textually above the graph. Each curve depicts the true positive rate or the recall 
on the y-axis and the false positive rate or the Type I error on the x-axis. The latter corresponds to the ratio of 
mushrooms wrongly classified as poisonous to all edible mushrooms.
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accommodate all variations of the different mushrooms and toadstools. Our findings indicated that although our 
data is not perfect, it is a much better and much more realistic alternative to the task of attribute based binary 
classification. In light of the current literature and its usage, our new pilot data should be considered as state of 
the art for the literature.

Seventh, we succeeded in obtaining reduced and fitting versions of the secondary data, to conform to the 
1987 data format and to support the task of comparison.That is to say, the 1987 data showed a significantly 
higher variance, while the secondary data had no variance. It is worth noting that the identical number of vari-
ables opens the possibility of combining data sets created from different sources. One approach could explore 
classification when exchanging test sets between both data. Another approach is to merge the two data and 
analyze the resulting data set. While the matching method was good, creating such a match results in a loss of 
information due to the mutual exclusion of several variables. That is to say, making data versions with identical 
variables requires an exclusion of a lot of information. We deem it is not reasonable to run the classification to 
draw any conclusions. Generally, without using any of the previously mentioned approaches, results obtained 
using random forests are very good. Yet, it is important for future work to expand and enrich the primary data 
with more species. Moreover, multiple simulations and versions of a secondary data may be investigated by 
varying the co-variance matrix.

Eighth, the task of binary classification was explored to demonstrate a potential application of our pilot data 
for classification, the secondary data. We found that random forests were best suited to separate the data points 
present in this newly created data. This showed that our data are better at capturing the non linear nature of 
mushrooms. Cross validation results were stable and robust for all four classifiers on the secondary data. We 
may attribute it to the larger number of data points, it has about eight times more data points than the 1987 data. 
Our work sets a starting point for future benchmarking. Aside from using different classifiers, each classifier 
may also be adjusted to the problem. For instance, for all class predictions made in this work, the class dividing 
threshold was always chosen as 0.5. While this is a good starting point, the threshold may be fine-tuned to better 
adjust classification results.

Ninth and last, many mushrooms species are very similar to each other. A binary classification cannot be reli-
able. The primary data can be used to simulate other randomized versions of the data with an arbitrary number 
of hypothetical mushrooms per species. Indeed, since the primary data also featured the two multinomial classes 
name and family, it is also possible to simulate new variations of secondary data for multinomial classification. 
This means that instead of only identifying a mushroom as poisonous or edible, this work can be extended to 
identify a certain family or certain species. Furthermore, multivariate classification is also possible by simulat-
ing secondary data (with two or all three of the classes simultaneously). Moreover, we would suggest expanding 
on this work by not only looking at multinomial classification but also by approaching trained mycologists to 
safely verify the data. As a result, solving the problem of mushroom identification with text book based simulated 
data alone comes with many shortcomings. We believe it is really important to consider real life observations 
because they are a crucial foundation to all text books. With a more realistic starting point, the data may be 
extended with simulated data with the help of data augmentation. This would effectively provide the means to 
create more diverse data without adding new data points; in turn, circumventing the need for gathering and 
integrating more data.

Methods
The methods is divided into seven data related tasks: formatting, extraction, curation, simulation, quality and 
integrity checks, binary classification and evaluation.

Data format.  The primary data follows the format or structure of the 1987 data; which is briefly detailed 
below. It is based on 23 species of gilled mushrooms from the book The Audubon Society Field Guide to North 
American Mushrooms2. Each nominal variable from the 23 variables of the 1987 is encoded with a single unique 
variable. It is reported as category name: letter on its first occurrence and from there on only as category name. 
The binary class class is separated into edible: e and poisonous: p. The poisonous subclass includes inedible mush-
rooms as well as those of unknown edibility. Further details of the data encodings are reported in Supplementary 
Table S1.

Motivated by the comparison of a new data to the historical 1987 data, we create the primary data by taking 
both the binary class and the names of the variables without changes. However, the possible values of the vari-
ables in the 1987 data are changed from single nominal values to sets of nominal values in the primary data. 
The possible nominal values and their 1-letter encoding remain unchanged. The values of the variables of the 
primary data are now reported as {set of category names}: {set of letters}. A possible value for the first variable 
of the primary data cap-shape is {convex, flat}: {x, f}. This corresponds to interpreting that the cap-shape of this 
mushroom species can be flat or convex. While each entry of the 1987 data represents a hypothetical mushroom 
entry, each entry in the primary data represents a mushroom species.

Data extraction.  The primary data is based on a total of 236 mushroom species from the third edition of 
the identification book Mushrooms and Toadstools from 20133. Due to some species having either no cap, or with 
potentially missing attributes, 63 species were excluded. The book is separated into family groups, which are 
further divided into book entries for each species. A book entry has 6 structured parts: 

1	 the mushroom species name, in both English and Latin (including the family name, only if the given species 
is the first representative of a given family)
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2	 the general description in prose format containing information and characteristics (includes most of the 
variables)

3	 the size attributes (incl. cap diameter, stem height and stem width),
4	 the habitat (it is one variable in the primary data)
5	 the season during which the species grows, and
6	 the edibility or the binary class: poisonous vs. edible.

The data is extracted from the electronic publication or EPUB file format of the Mushrooms and Toadstools book3. 
This file format follows the Hypertext Markup Language or HTML, which is both human and machine read-
able. Since it defines a set of rules for encoding documents, we follow them to extract the data by using natural 
language processing modules. This includes parsing and extracting attribute based values from free form text in 
the Description of each mushroom species (Figure S1). All details modules and aids for running our scripts are 
reported in the Supplementary material.

As detailed in the previous section, each book entry has 6 structured parts. Each is extracted as follows: 

1	 the name is defined as a header and mapped to the same-named class. This header and thus the book entry 
is identified by the HTML < p > tag which surrounds the name and has the class attribute value “chapter-
HeadA” (case insensitive). The string of characters defines that follows the < p > tag with the class attribute 
value “paraNoIndent” contains one of the other structuring parts and defines the general description of a 
book entry.

2	 the nominal variables are either present in the description text or are missing for the mushroom species found 
in the book entry. These variables exclude the habitat and the season. Sub-strings of the general description 
may correspond to the following variables: cap, gills, veil, stem and ring. This facilitates the mapping to the 
corresponding variable names by correctly matching sub-strings to the variable names. By following this 
logic, all positive matches are read out to the fitting nominal variables. For the example sentence ‘The entire 
young fruit body is enclosed in a white veil which leaves fragments (which may wash off) on the shiny red, 
marginally grooved cap.’, the program extracts {grooved, shiny}: {g, h} for cap-surface, {red}: {e} for cap-color, 
{universal}: {u} for veil-type, and {white}: {w} for veil-color.

3	 the three quantitative variables can be directly parsed from the size attributes.
4	 the habitat is parsed and matched to its corresponding nominal variable by looking for the possible values 

in the subsequent sub-string after a positive match.
5	 the same logic is employed for the season, and
6	 the edibility is parsed to class since it always starts with either edible, inedible or poisonous.

Data curation.  For comparison purposes and due to the differences in the text book sources, the variables 
that describe the primary data are adapted to the historical data from 1987. We follow the aforementioned book 
entry structure to report the relevant changes. 

1	 the English name as well as the family are added as multinomial classes
2	 the occurrences of stalk in variable names are replaced with stem since stem is more common in the text book. 

The variable bruises? is amended to does-bruise-or-bleed so to include latex bleeding mushrooms, which are 
absent from the previous 1987 data. The following variables are removed or changed since the information 
in the prose text is insufficient for these variables in their current form: odor, gill-size, stem-shape and popu-
lation. The variables stem-surface-above-ring and stem-surface-below-ring as well as stem-color-above-ring 
and stem-color-below-ring are combined into stem-surface and stem-color, respectively. The combination is 
performed by not differentiating between above and below ring as this information is not present in the text. 
The variable ring-number is changed into has-ring

3	 the variables cap-diameter, stem-height and stem-width are added as continuous quantitative variables since 
these are the size attributes (in appearing order) that are listed for almost all mushroom entries

4	 the nominal variable habitat remains unchanged
5	 the nominal variable season is added, and
6	 the binary variable edibility remains unchanged.

The matched book entries are checked for inconsistencies to improve the data quality. This is a necessary step 
before any subsequent tasks.

Data simulation.  The secondary data are composed of hypothetical mushroom entries whose fitting char-
acteristics are simulated from the primary data. To remain comparable to the 1987 data structure, we rely on sin-
gle variable randomization. While the format of the secondary data is fully adapted from the primary data, the 
values of the variables move from nominal sets and quantitative ranges to single nominal and quantitative values, 
respectively. To address the simulation step, we consider the classes, the nominal variables, and the quantitative 
variables. The binary class class for edibility and the multinomial classes name and family have unambiguous val-
ues. Since they are adapted to the data format, they are carried over to the secondary data without any changes.

The nominal variables have nominal sets as values representing possible values for each mushroom charac-
teristic. Starting from each nominal set, single nominal n values are randomly selected. While each set belongs to 
one mushroom species, every single value that is sampled belongs to a hypothetical mushroom. The simulation 
corresponds to a random sampling step, it is performed using the choice function. An additional simplification 
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step is carried out to adapt the 1987 data format. For example, the Fly Agaric entry in the primary data has the 
value {grooved, shiny}: {g, h} for cap-surface. This is due to the corresponding book listing this species with a 
shiny and grooved cap. The simulation results in n hypothetical entries having either a grooved cap, or a shiny 
cap. In another example, the red-brown color that is listed in the book is interpreted as the value {red, brown}: 
{e, n}. This also leads to either red or brown mushroom entries.

The quantitative variables cap-diameter, stem-height and stem-width are continuous variables. These variables 
fall within a [min, max] interval and often associated with an average value or mean µ . To reflect that, we create 
the following interval [(1− 1

4
)µ, (1+ 1

4
)µ] . In the case of stemless mushrooms, the variables stem-height and 

stem-width are set to 0. For the simulation step, the [min, max] intervals are respected. Multiple assumptions are 
fundamental to the herein presented methodology, which we describe below.

•	 The three variables: cap diameter, stem height, and stem width are normally distributed in each given interval. 
For each of those three variables, we rely on the standard normal distribution to generate n values from a 
normal distribution of N(0, 1), with N(µ, σ).

•	 These three variables have a certain correlation. To improve the realism of the simulation step, an explicit 
correlation to their normal distributions can be added. For an empirical result, the co-variances should be 
calculated from field observations. To demonstrate our method, we assume the following co-variance matrix, 
where the stem related quantities correlate somewhat stronger. 

 with the variance of each normal distribution to be σ 2 = 1 and the co-variances between cap diameter (a), 
stem height (b), and/or stem width (c): 

•	 To generate three correlated normal samples from the three uncorrelated normal samples, a matrix decom-
position is calculated as COV = LL⊤22. Since a co-variance matrix is always positive semi-definite, that is 
to say all eigenvalues of the co-variance matrix are non-negative23, L can be obtained as a lower triangular 
Cholesky decomposition. To obtain the final samples, we multiply each of the three uncorrelated normal 
samples with L, the resulting matrix: 

•	 The resulting normally distributed values of n for each variable can each be assumed as hypotheti-
cal mushroom entries. For each variable, we assign a correlated normal sample of size n. The sample is 
resized by calculating x = 1

2
(x + 1) for each value, resulting in a normal distribution with µ = 0.5 . Then 

x = x ∗ (max −min)+min , so 99.7% of the normal sampled values fall within the range of the interval 
[min, max].

Data quality and integrity.  Apart from the previously covered data curation step of the primary data, it 
is important to ensure the data quality and integrity. We briefly describe quality checks and preprocessing steps. 
Further details are reported in the Supplementary Material.

•	 Balance and comparability of the secondary data and the 1987 data. The balance of the data is examined by 
analyzing the occurrence of poisonous vs. edible (nominal variable class). The ratio of the missing values for 
each variable and the auto-correlations among each variable pair. The latter depends on the variable type 
(e.g., Theil’s U, Pearson correlation of a quantitative variable pair)24,25. Variable pair correlations are visualized 
as a heat map as seen in Figures 2 and 3.

•	 Second data curation for correct data encoding. We handle missing values by using an imputation method, 
that is to say a threshold based filtering. First and to limit the dilution of the analysis, variables with more 
then 50% missing values are removed. Second, the remaining data with missing values are replaced using 
the most frequent single imputation26,27.

•	 Data transformation for machine learning. The data are split into training and testing sets for the binary 
classification task. It is imperative to explicitly encode all values in both data into numerical values. This is 
due to the classifiers implementation which only accepts numerical values as input. The binary class is label 
encoded using sklearn’s functionality. For instance, the value poisonous: p is encoded as 1 and edible: e as 0. 
The quantitative variables remain unchanged, while the nominal variables are one-hot encoded.

•	 Direct data mapping as alternative comparison. This mapping between the two data sets – 1987 data and 
secondary data – is performed by means of duplicating matching names and merging them in the same row 
of the CSV file. On the contrary, for a variable with no apparent match, two alternatives are possible and this 
is encoded as empty string. Indeed, a variable with the corresponding name is either added to the other data 
containing the value 0 (no mushroom entry has a corresponding nominal value), or the variable is renamed 
into a pre-existing variable.

•	 Training and testing data sets are prepared using the standard Pareto principle. The training set is randomly 
sampled without substitution, it represents 80% of the data. The remaining 20% are used as a test set. To 

(1)COV =

[

1 0.5 0.5

0.5 1 0.7

0.5 0.7 1

]

(2)COV(a,b) = COV(a,c) = 0.5, COV(b, c) = 0.7

(3)L =

[

1 0 0

0.5 0.87 0

0.5 0.52 0.69

]
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further assess the predictive performance of the machine learning models on the data, a five-fold cross-
validation is employed.

Binary classification.  The predictive models are created with the help of five different classifiers: Naive 
Bayes, logistic regression, linear discriminant analysis, and random forests. We briefly describe the assumptions 
and benefits of each method.

•	 Naive Bayes is a set of classifiers for supervised learning that use the Bayesian theorem28. The data is assumed 
to be pairwise independent and the data ought to be balanced.

•	 The logistic regression is a statistical model popularly used as a supervised learning classifier29. It assumes 
independence of errors, linearity in the logit for continuous variables, absence of multi-collinearity, and lack 
of strongly influential outliers.

•	 The Linear Discriminant Analysis (LDA) is a generalization of Fisher’s linear discriminant, it finds a linear 
combination of features that characterizes or separates two or more classes30. It makes the assumption such 
as the explanatory or predictor variables must be normally distributed.

•	 Random forests (RF) classifier is a supervised learning algorithm. The forest it builds, is an ensemble of deci-
sion trees. This ensemble of multiple decision trees are merged together to get a more accurate and stable 
prediction. RF have no formal distribution assumptions. They are non-parametric and can handle skewed 
and/or multi-modal data, as well as categorical data that are ordinal or non-ordinal.

Evaluation.  First, predictions are made using the aforementioned four classifiers. The outcome corresponds 
to obtaining a probability of a mushroom belonging to the class poisonous: p of each listed entry. To convert the 
probabilities into class predictions, a threshold is chosen. Without further information, we maintain the stand-
ard approach of the commonly used threshold of 0.5. This results in a mushroom being classified as poisonous: p 
if the probability is greater or equal to 0.5 and as edible: e if it is less than 0.5.

Second, we report different scoring metrics and the ROC curve to show the model performance. On one hand, 
different classical metrics are derived from the confusion matrix31: accuracy, precision, recall. We add to this list 
the F beta score which balances the recall and the precision metrics by calculating a weighted harmonic mean. 
To avoid false negatives (FN), we specifically add the F2 score by giving twice as much importance to recall as 
to precision. On the other hand, we report graphical representations of each model performance as ROC plots 
in Fig. 5. Unlike the aforementioned metrics, which are derived from the number of predicted classes, the ROC 
curve looks at the prediction probabilities before assigning a class dividing threshold.

Third and last, cross-validation is performed to create k separate evaluations. It permitted us to show how 
well a classifier performs with different training set choices. Since multiple evaluations are performed, the mean 
and variance of the recall and the F2 score are calculated and reported.

Conclusion
The newly created mushroom data, mentioned herein as the secondary data, did a better job at capturing the 
complexity of mushroom identification than its predecessor, the 1987 data. Although it is a pilot data for classi-
fication task, this new data set required a classifier capable of separating data points using a non linear boundary. 
Indeed, the random forests classifier achieved nearly perfect results.

Our work encompasses a new secondary data set that passes data quality and integrity checks as well as a 
workflow that enables the creation of such pilot data from curated primary data. For example, the correlation 
between variables in the secondary data in Fig. 3 was a testament to that. While several variables are strongly 
determined by other variables in the 1987 data, this was not the case for our pilot data. Moreover, the higher 
correlations were expected as they are determined by the co-variance matrix. Taken together, our work makes 
the problem of creating not only larger data sets tractable but also adjusting for growth rates of specific mush-
room families.

Since the 1987 data looks at a very specific subset of mushrooms, that is to say, 23 species from only two 
families, it led to an over-simplification of the general task of mushroom classification. This point is especially 
important when interpreting the binary classification results. Moreover, the cross-validation results were sig-
nificantly worse for the 1987 data. The results for the 1987 data had significantly higher variance for every single 
classifier, while the secondary data proved to be robust with little to no variance. The best binary classification 
results were obtained with LDA for the 1987 data and RF for the secondary data, respectively. This was indica-
tive of the linear separability of the data points in the historical data set but not for the new proposed data set.

Although the secondary data set serves as a pilot data for classification tasks, perfect classification results 
indicate that it is a better alternative to the 1987 data. Moreover, our results show that our data set is more suit-
able in terms of data quality, data integrity, robustness in cross validation, and in its representation of mushroom 
species. Withal, even if it does not contain all known mushroom species it presents a more realistic data set and 
should be adopted as it is a better alternative. We believe our approach provides a stepping stone for the research 
community to create and use better attribute based mushroom data sets and for the public understanding of 
machine learning approaches.
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